Print
25 July 2014
National Institutes of Health, USA
Scientific areas ripe for targeted investments in technology development and research to improve health are the focus of new programs of the National Institutes of Health’s Common Fund. The programs include work to facilitate the study of how sugar modifications affect proteins, to understand the arrangement of DNA within cells in four dimensions, and to enable the development of new therapies that allow control of organ function through manipulation of nerves.
Each program was selected through rigorous efforts to capitalize on new areas of biomedical research for which strategic investments can have a transformative impact over five to 10 years. Implementation of the programs would be based on the availability of funding.
“The Common Fund enables NIH to identify areas of science where opportunities for broad transformation exist,” said NIH Director Francis S. Collins M.D., Ph.D. “Emerging technologies or new discoveries in each of these new program areas provide the opportunity for a 5-10 year investment to radically change the scientific landscape, leading to new therapeutic avenues for many diseases and providing new foundational knowledge.”
Glycoscience is the study of how the addition of sugar modifications to proteins change the way the proteins function in important ways. The complexity of carbohydrate chemistry makes the analysis of these sugar modifications inaccessible to most biomedical researchers. The Glycoscience program will develop methodologies and resources to make the study of sugar modifications more accessible to the broad biomedical research community.
The 4D Nucleome program will develop technologies to enable the study of how DNA is arranged within cells in space and time (the fourth dimension) and how this affects cellular function in health and disease. Recent scientific advances, coupled with technological breakthroughs in tools and methods, provide the opportunity to catalyze this emerging field of research. 4D nucleome science aims to understand the principles behind the organization of the nucleus in space and time, the role that the arrangement of DNA plays in gene expression and cellular function, and how changes in nuclear organization affect health and disease.
The Stimulating Peripheral Activity to Relieve Conditions (SPARC) program will develop high resolution neural circuit maps and next generation neural modulation devices – implants that can stimulate nerves – and will demonstrate the use of these tools in the development of new therapeutic strategies. All organs are stimulated by nerves, which send signals that affect the organ’s function. Modulation of nerve signals to control organ function has therefore been recognized as a potentially powerful way to treat many diseases and conditions, such as hypertension, heart failure, gastrointestinal disorders, type II diabetes, and inflammatory disorders.
“These programs tackle some of the most difficult and novel areas being confronted by the biomedical research community,” said James M. Anderson, M.D., Ph.D., director of the Division of Program Coordination, Planning, and Strategic Initiatives, which oversees the NIH Common Fund. “Each new program has the ability to catalyze biomedical advances and expand research in critical areas of human health.”
To read more about the NIH Common Fund and new and existing programs, visit http://commonfund.nih.gov.
The NIH Common Fund encourages collaboration and supports a series of exceptionally high-impact, trans-NIH programs. Common Fund programs are designed to pursue major opportunities and gaps in biomedical research that no single NIH Institute could tackle alone, but that the agency as a whole can address to make the biggest impact possible on the progress of medical research. Additional information about the NIH Common Fund can be found at http://commonfund.nih.gov.
About the National Institutes of Health (NIH): NIH, the nation's medical research agency, includes 27 Institutes and Centers and is a component of the U.S. Department of Health and Human Services. NIH is the primary federal agency conducting and supporting basic, clinical, and translational medical research, and is investigating the causes, treatments, and cures for both common and rare diseases. For more information about NIH and its programs, visit www.nih.gov.
The RMI group has completed sertain projects
The RMI Group has exited from the capital of portfolio companies:
Marinus Pharmaceuticals, Inc.,
Syndax Pharmaceuticals, Inc.,
Atea Pharmaceuticals, Inc.